Színlátás – Wikipédia

Megvilágítás a látáshoz,

megvilágítás a látáshoz myopia hyperopia age

A csapok a látható fénytartomány bizonyos szeleteire érzékenyek, viszont csak a beérkező fény mennyiségéről adnak információt az idegrendszernek, a beérkező fény hullámhosszáról nem.

Az megvilágítás a látáshoz számára a látható színtartományt hozzávetőlegesen a - nm hullámhosszú elektromágneses sugárzás jelenti. Ezt a színtartományt az emberi szem három különböző típusú csappal fedi le, más fajoknál mind a látható színtartomány, mind a csapok száma eltérő. Példának okáért, egy piros szoknya nem piros színt sugároz ki.

megvilágítás a látáshoz maszk a látás javítására

Inkább azt mondhatnánk, hogy elnyeli az ember számára látható fénytartomány minden frekvenciájátkivéve a piros érzetet keltő frekvenciákat. Egy tárgy színe fajspecifikus szubjektív élmény, nem pedig a tárgy fizikai tulajdonsága. A színek egységei[ szerkesztés ] Isaac Newton volt az első, aki a prizmán áthaladó, a spektrális színekre vagyis a szivárvány színeire bomló napfénynyaláb jelenségével először érdemben foglalkozott.

Megmutatta, hogy ha a spektrum színei közül kiválasztunk egyet például a sárgátés rávetítjük egy megfelelő színtartományra sárga esetén ez nagyjából a  nm-es tartomány kékakkor fehéret látunk.

Bármely két spektrális összetevőt, melyekről elmondható, hogy ha összeadjuk őket, fehéret kapunk, komplementernek kiegészítő nevezzük. Egy átlagos emberi szem több száz színárnyalatot képes megkülönböztetni, melyek a spektrális színek különböző arányú összegéből képződnek. Newton hét spektrális alapszínt feltételezett a tudomány mai álláspontja szerint helytelenül abból kiindulva, hogy a látás és a hallás szoros kapcsolatban áll a zenei skála is oktávonként hét hangból áll.

A hét ék alakú körcikk mindegyike egy-egy spektrális színt ábrázol, ezekre Newton többféle szabályt is kidolgozott. Newton hét körcikke azt a vélekedését tükrözi, miszerint hét különálló tiszta színnek kell léteznie.

Ma már tudjuk, hogy ez nem így van, ezért a Newton féle színkört Johannes Itten módosította úgy, hogy a komplemeter színpárok egymással szemben legyenek, és a kör közepére pedig a fehér szín kerüljön. Ezen a színkörön már látható, hogy a színek nem neveik, hanem hullámhosszuk szerint rendezettek, de nem egyformán oszlanak el a színkörön mivel vannak olyan hullámhosszok, amelyeknek nincsenek komplementer kiegészítőik.

Háromszín-elmélet[ szerkesztés ] Newtont követően - és Newton elképzelésével szemben - egyre több olyan elmélet látott napvilágot, mely szerint három megfelelően kiválasztott alapszínből valamennyi szín kikeverhető. Thomas Young angol orvos és fizikus ben kifejtette, hogy a színlátás háromszín természetének élettani alapjai vannak, és megvilágítás a látáshoz színérzékelés a szemben elhelyezkedő háromféle receptor ingerlési mintázatainak eredményeként jön létre.

A három alapvető színérzéklet, a piros, a zöld és az ibolyaszín az idegrendszer elkülönült elemei.

Az emberi szem és a látás

Hermann Ludwig von Helmholtz Young elméletét ötven évvel később Hermann Ludwig von Helmholtz fejlesztette tovább, és Young-Helmholtz-elméletként, illetve háromszín-elméletként vált ismertté. Helmholtz szerint a szemben háromféle, ma már csapokként ismert színreceptor van, melyek a látható fény hosszú pirosközepes zöld vagy rövid kék hullámhosszúságú tartományába eső fényre érzékenyek.

A három receptor együtt határozza meg a színérzékelést. Ellenszínelmélet[ szerkesztés ] Ewald Hering ben terjesztette elő nézz egy könyvet a látomásról, mely szerint négy alapszín létezik: kékvöröszöld és a sárga. A vörös és a zöld, a sárga és a kék ellentétes színek, ugyanis nem észlelhetők egyszerre.

Sohasem látunk vöröseszöldet vagy sárgáskéket, hiszen a vörös és zöld keverékét sárgának, a kék és a sárga keverékét pedig fehérnek látjuk. Hering szerint látórendszerünk kétféle színérzékeny egységet tartalmaz, az megvilágítás a látáshoz a zöldre vagy a vörösre, a másik a kékre vagy a sárgára válaszol. A két egység másképp kezeli a színeket: a vörös-zöld rendszer például növeli aktivitását vörös szín hatására, zöld színnél pedig csökkenti. A sárga-kék egység növeli válaszgyakoriságát, ha kék inger stimulálja, és csökkenti, ha sárga.

megvilágítás a látáshoz hogy a látás hogyan befolyásolja a futást

Hering elmélete a negatív utókép jelenségére is magyarázatot ad. Ha vörös képet nézünk és kifárasztjuk a rendszer vörös válaszát, akkor a vörös-zöld egység zöld összetevője nagyobb aktivitást fog mutatni, ha fehér felületre nézünk zöld képet látunk.

Az emberi szem és a látás

Tehát az ellenszínt észleljük, ha egy ideig egy bizonyos színárnyalatú ingernek vagyunk kitéve. Ez megfelel annak az elképzelésnek, miszerint a látórendszer bizonyos színeket ellentétes párként kezel.

A háromszín-elmélet és az ellenszínelmélet sok éven keresztül versengett egymással, míg fel nem vetették, hogy egyesíthetők egy olyan kétszintű elméletben, melyben a háromszín-elmélet a receptorok szintjén, az ellenszínelmélet pedig magasabb szinteken érvényes. A színek három dimenziója[ szerkesztés ] Az észlelt színeket általában három dimenzió mentén jellemezzük.

Világítástechnikai alapfogalmak

A színárnyalat a színek nevével leírt minőségre utal, azt a tulajdonságot jelöli, amely elkülöníti például a vöröset, a zöldet, a kéket, stb. Az élénkség a színes felületről visszaverődő fény mennyiségét jelzi.

megvilágítás a látáshoz lát látásra

A telítettség a fény tisztaságát jelenti. A telített színek nem tartalmaznak szürkét, a telítetlen színek - például a rózsaszín - a vörös és a fehér keverékének tűnnek.

A színészlelés mechanizmusa[ szerkesztés ] Newton megmutatta, hogy a fény és megvilágítás a látáshoz szín összetett kapcsolatban vannak egymással, és hogy különböző színek, hullámhosszak összetétele ugyanahhoz a színélményhez vezet.

megvilágítás a látáshoz elveszítjük a szemünket

Ezen színélmények kialakítását az élőlények idegrendszere több lépésben állítja elő. Első lépésben a csap típusú vizuális receptorok fényérzékeny pigmentjei végzik a feldolgozást, majd ezek megfelelő táplálkozás a látás javítása érdekében a retinális ganglionok továbbítják az oldalsó genikulátus maghoz corpus geniculatum lateralea végső színélményt pedig még magasabb szintű vizuális központok adják.

Az egyes fázisokban megfigyelhető észlelési állapotokra egy-egy, egymást kiegészítő elmélet létezik.

A trichromatikus elmélet a retinális feldolgozást modellezi, az opponens elmélet pedig a corpus geniculatum laterale neuronjainak működését írja le. Az emberi látás során a fény hullámhosszát először három, spektrálisan széles és egymást nagymértékben átfedő csapfotopigment elemzi. Ezek eredményei azután a kromatikus és az akromatikus csatornákat táplálja. Monokromáttól a trikromát látásig[ szerkesztés ] A fotopigmentek különbséget tesznek egyes hullámhosszok között úgy, hogy bizonyos hullámhosszú fényeket hatékonyabban nyelnek el, de bármilyen hullámhosszú is az elnyelt fény, ugyanazt az eseményt idézi elő a vizuális receptorban.

Vagyis a receptor válaszát csupán az elnyelt fény mennyisége határozza meg, nem szolgál információval az elnyelt fény hullámhosszáról.

A színlátás fizikai feltételei

Ez az univariancia elve. Az ilyen szemet monokromátnak nevezzük. Félhomályban minden ember monokromát látásúmert a csap típusú receptorai nem reagálnak a gyenge fényre, csak a pálcikái segítségével építi fel idegrendszere a látott képet, ami ennek következtében szürkeárnyalatos lesz.